

Embrace a
Beautiful
Tomorrow with
Cellular IoT
Technology

IoT drives industrial digitalization

5G keeps evolving 5.5G brings new technologies, new capabilities and new business **Capability Chipset Cost eMBB** >100 Mbps NR / ~\$20 UCBC LE RTBC **Uplink Centric** Real-Time Broadband Broadband Communication **5**.5G Communication **R18** R19... ≤100 Mbps \$5~10 RedCap URLLC mMTC **HCS** Harmonized \$1~2 ≤200 kbps Communication and Sensing ≤100 kbps \$0.X

IoT 5.5G technologies aim to address every market scenario 100+Bn potential of IoT connections

NB-IoT Start from smart metering to diverse applications

4 Ten-Million-Level Applications

Smoke Detector

7 Million-Level Applications

Appliance

Street

Light

Diverse Applications

Lock

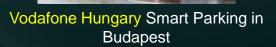
Water Meter

Gas Meter

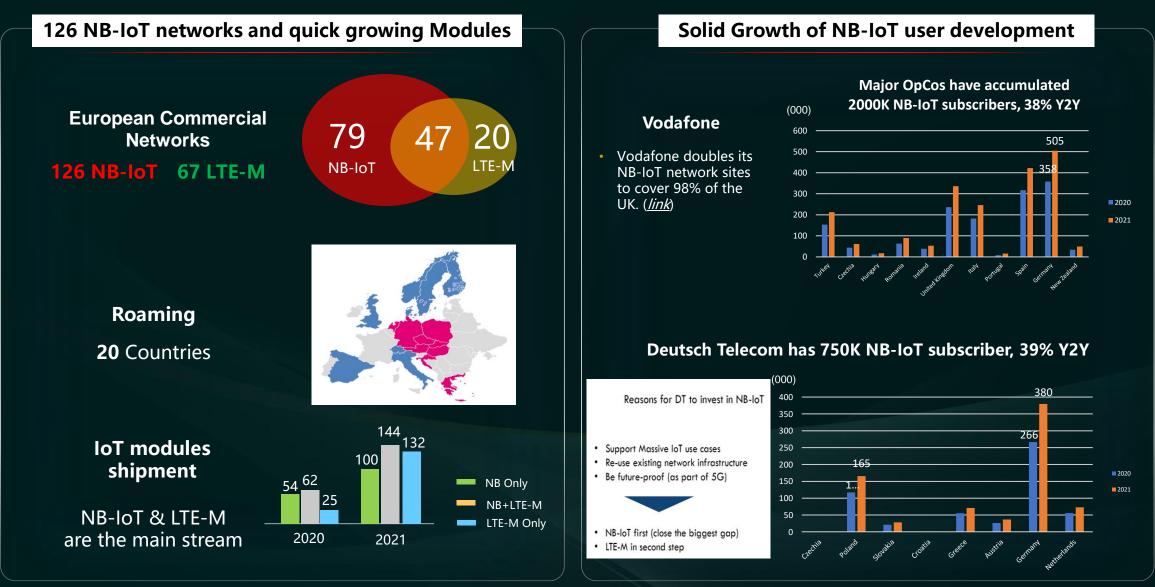
Electric Meter

Smart Metering Projects

Telefonica:130,000 NB-IoT smart meters, expanding to 650,000 in 3 years, to monitor water usage, wastage, and leakage for water utility Canal de Isabel II, which manages the water supplies for Madrid, in Spain.


Vodafone partnered with SES Water to develop and implement NB-IoT to create an intelligent water distribution network

DT Smart City in Patras, Greece (Smart Parking, Smart Lighting)


Vodafone Spain Help to Flash, V16 Connected beacon

"...we are going to install roughly 1 million more smart meters with NB-loT"

-- Manuela Pagella Head of Gas Metering, Italgas Ret

Europe: NB-IoT network is the most popular LPWA technology

RedCap Key Scenarios: video surveillance: smart Wearable, industrial sensor

Video surveillance

- ✓ Intelligent vehicle-mounted monitoring
- ✓ Pan security monitoring

Smart Wearable

- ✓ Smartwatch
- √ Various intelligent wearables

Industrial sensor

 ✓ Predictive production and maintenance in campuses, driving real-time, low-cost, and low-latency exploration

4 Key Technology Definition Directions for Standards Discussion

Low-cost UE

- ✓ Reduce bandwidth/cost
- ✓ Reduce complexity
- ✓ Reduced size

UL Rate

- ✓ High-end 7.5-25 Mbps
- ✓ Economical 2-4 Mbps

Low power consumption

✓ The battery of the device should be used for multiple days, up to 1-2 weeks

Low latency

- < 100ms@99.99%</pre>
- ✓ Explore High Safety 5-10 ms

RedCap addresses High-Value services by differentiated value

1.2X

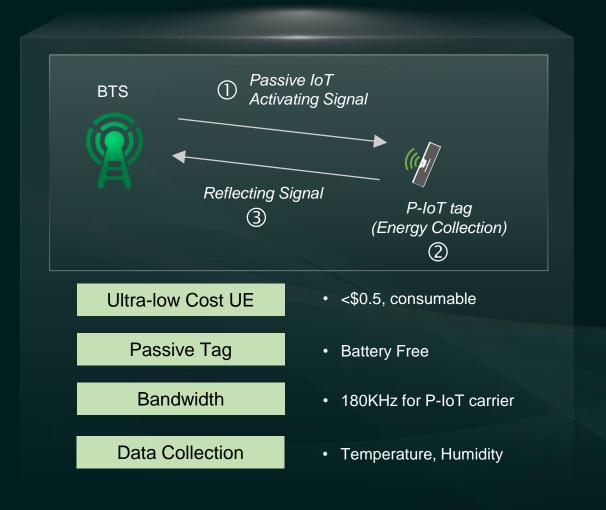
REDCAP Bring Stronger Capabilities than LTE

Capability	LTE CAT1	LTE CAT4	REDCAP			
Module Cost	~\$4.5	~\$9	R17~\$9 R18 ~\$4.5			
Peak Throughput (single user)	UL:5Mbps DL:10Mbps	UL:50Mbps DL:150Mbps	UL: 120Mbps DL: 240Mbps			
Peak Capacity (single cell)	UL:50Mbps/ DL:150Mbps @1.8G	UL:50Mbps/ DL:150Mbps @1.8G	UL:400Mbps/ DL:1.5Gbps @2.6G			
Slicing	Not Support	Not Support	Support			
Power Consumption	~	Working: 120-160mA Standby: 12-22 mA	Benchmark CAT4 Module Power Consumption 20% Reduction			
Latency /Reliability	>100ms	>100ms	~20ms@99.99% (Support URLLC)			
Coverage Radius	A	A	A+ (2-4dB)			
Positioning Accuracy	>100m@90%	>100m@90%	<10m@90%			

Differentiated Value

Lower Cost & Better Coverage

4-5X Lower cost comparing to 5G Module
30-50% Less Power
20% extra coverage


Mitigating negative impact on the network due to bandwidth incompatibility

Extra Capabilities

Slicing, Positioning, Low Latency

Passive IoT helps MNOs to enter 10xBillion IoT connections market

5.5G Extends C-IoT to Passive Connections

Passive IoT Coverage is 10x+ than RFID

Field verification: reach 235m Passive IoT coverage

Goods inventory

Logistic tracking

Agricultural detecting

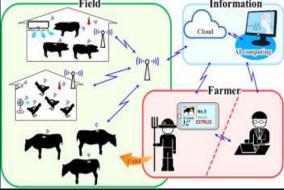
Two categories of use cases for Passive IoT

Use Case #1: Pre-stored data report

- Information (e.g., identity) is pre-stored in a small size, ultra-low cost and batteryless tag
- Example: asset management in manufacturing and logistics industries.

Current: Barcode

- Handheld LOS scanning (labor intensive)
- Slow one-by-one scanning (time consuming)


Passive IoT tag

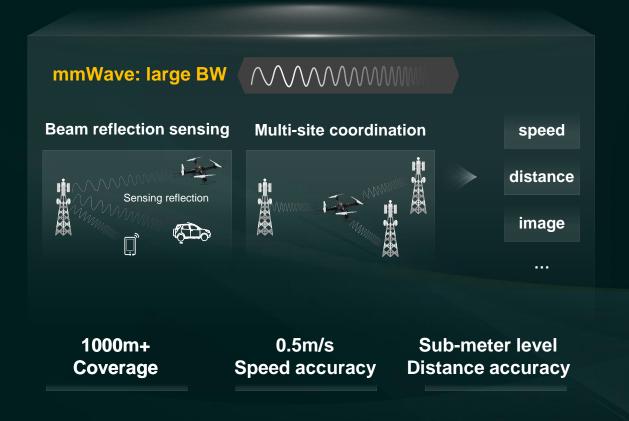
- Automatic remote reading
- Hundred times faster reading

Use Case #2: Real-time data report

- Information (e.g., temperature) is generated and transmitted in real time by a device with no battery replacement during lifetime.
- Example: sensor network in manufacturing and livestock farming industries.

Battery-operated

- Cost for batteries and replacement
- Increased device size
- Infrequent transmissions for battery life
- Environmental issue (Lithium, lead, etc.)


Batteryless operation

- Low maintenance cost
- Miniaturized device
- · No limits on transmission period
- Environment friendly (Ambient energy)

Sensing & communications integration Enable new business opportunities beyond connectivity

Large BW mmWave for high-precision sensing capability

Vehicle Sensing @ Smart Transportation

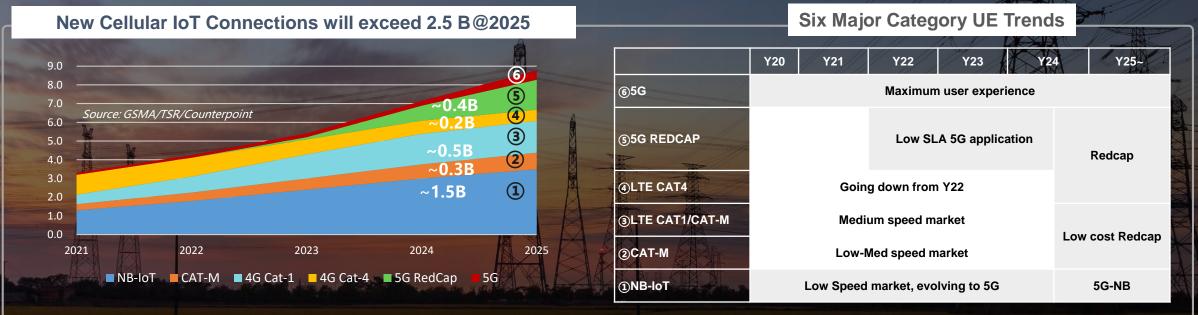
Smart Traffic

Smart Fencing

<u>₽</u>

Low-sky

security


. . .

Cellular IoT keep ramping up, NB-IoT and LTE Cat-1 will be dominating at 2025

No. Connections help to drive the module cost down

Capability	NB-IoT	еМТС		CAT1	CAT4	5G	REDCAP		Passive loT
Module Cost	~\$2-3	~\$5-8		~\$4.5	~\$9	~\$59	R17~\$9	R18 ~\$4.5	\$0.X
Peak Throughput (single user)	DL:126Kbps	CAT M1 UL:HD 1.1Mbps/FD 2.98M DL:HD 588kbps/FD 1M	CAT M2 UL:HD 2.6M/FD 6.9M DL: HD 1.2M/FD 4M	UL:5Mbps DL:10Mbps	UL:50Mbps DL:150Mbps	UL:300Mbps DL:1Gbps	UL:120Mbp DL:240Mbp		~ 10Kbps*
Latency	< 5s	<15	3	>100ms	>100ms	~20ms	~20	ms	~10s*

* Final figures are still under discussion in 3GPP SA1

